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The human brain exhibits distinct neurophysiological responses during deceptive and truthful states, 
making it a compelling target for lie detection. Traditional polygraph-based approaches su�er from 
reliability issues due to their dependence on physiological arousal rather than direct brain activity. 
Brain-Computer Interfaces (BCIs) have emerged as a promising alternative, leveraging neuroimaging 
techniques such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) 
to capture brain activity associated with deception. The integration of deep learning with BCIs has 
transformed the �eld of lie detection, o�ering advanced computational techniques for extracting 
deception-related neural signatures. Unlike conventional machine learning models, deep neural 
networks (DNNs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs) 
enable automated feature learning, capturing complex spatial and temporal patterns in brain signals 
with unprecedented accuracy. The introduction of hybrid models, including CNN-LSTM and 
transformer-based architectures, has further expanded the capability of these systems, allowing for 
more re�ned deception classi�cation. Additionally, generative models such as Generative Adversarial 
Networks (GANs) and Variational Autoencoders (VAEs) have been employed to address data scarcity 
by synthesizing realistic neuroimaging data, improving model robustness and generalization. Recent 
advancements in self-supervised and reinforcement learning approaches have demonstrated 
potential in enhancing adaptability and performance in real-world deception detection scenarios. 
The increasing use of multimodal fusion, integrating EEG, fMRI, and physiological data, promises to 
improve detection accuracy and reliability. However, several challenges remain, including ethical 
concerns regarding privacy, the need for large-scale, high-quality datasets, and the interpretability of 
deep learning models. Future research should focus on developing transparent and explainable AI 
systems while addressing ethical considerations to ensure responsible deployment in forensic, 
security, and clinical applications. The convergence of neuroscience, arti�cial intelligence, and 
cognitive science marks a transformative step toward the development of objective, data-driven 
deception detection technologies.
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Lie detection has long been a topic of scienti�c inquiry, with 
applications spanning forensic investigations, security 
screenings, and clinical assessments [1]. Traditional methods, 
including polygraph tests, rely on physiological markers such as 
heart rate, blood pressure, and skin conductance [2]. However, 
these markers can be in�uenced by anxiety, stress, or 
countermeasures, rendering the polygraph unreliable. To 
overcome these limitations, researchers have explored brain 
activity as a more direct indicator of deception.

 Brain-Computer Interfaces (BCIs) provide a novel 
approach to lie detection by decoding neurophysiological 
signals associated with cognitive and emotional states. EEG and 
fMRI have emerged as the primary modalities for capturing 
neural responses linked to deception [3]. However, 
conventional machine learning techniques o�en struggle to 
handle the high-dimensional, nonlinear nature of brain signals. 
�e rise of deep learning has revolutionized this �eld, o�ering 
powerful tools to extract meaningful features and improve 
classi�cation accuracy.

 Recent advancements in computational neuroscience, 
particularly through deep learning models, have enabled the 
detection of deception-related neural patterns with 
unprecedented precision. Deep learning methods facilitate 
automated feature extraction, allowing researchers to bypass the 
limitations of traditional handcra�ed feature engineering [4]. 
�is review examines recent advancements in deep learning 
applications for BCI-based lie detection. It discusses the 
underlying neural mechanisms of deception, the role of EEG and 
fMRI in recording deception-related brain activity, and how deep 
learning models enhance the interpretation of these signals. 
Additionally, the review explores hybrid models, generative 
approaches, and multimodal fusion techniques that enhance the 
robustness and generalizability of deception detection systems. 
Challenges and future directions are also considered, highlighting 
the interdisciplinary nature of this emerging research area.

Neural Mechanisms of Deception
Deception is a complex cognitive process that involves multiple 

brain regions, including the prefrontal cortex (PFC), anterior 
cingulate cortex (ACC), and parietal regions. Studies using 
fMRI have demonstrated increased activity in the PFC during 
deceptive responses, re�ecting the cognitive load required to 
suppress the truth and construct a falsehood. �e ACC is 
implicated in con�ict monitoring, detecting inconsistencies 
between internal knowledge and external responses. �e 
parietal cortex, particularly the inferior parietal lobule, has been 
associated with attentional control and memory retrieval, which 
are essential during deception [5].

 EEG studies have identi�ed deception-related event- 
related potentials (ERPs), such as the P300 and N400 
components, which signify recognition and semantic 
processing discrepancies. �e P300 wave is particularly relevant 
in concealed information tests, where a suspect's recognition of 
critical details elicits a neural response even if they attempt to 
suppress it. Additionally, frequency-domain features such as 
increased beta and gamma band activity during deception 
further con�rm the neurophysiological underpinnings of lying.
Deep learning models can exploit these deception-related 
neural signatures to di�erentiate between truthful and 
deceptive responses with high accuracy. By learning 
hierarchical representations of neural activity, deep networks 
enable more precise classi�cation of deceptive states compared 
to conventional machine learning methods [6]. Advanced deep 
learning architectures leverage these brain signal patterns to 
enhance accuracy and robustness in real-world scenarios.

EEG-Based Deep Learning Models for Lie Detection
EEG is the most widely used modality for BCI-based lie 
detection due to its high temporal resolution, non-invasiveness, 
and cost-e�ectiveness. EEG signals, however, are inherently 
noisy and exhibit signi�cant inter-subject variability, making 
their interpretation challenging [7]. Deep learning models have 
been employed to address these challenges by automatically 
extracting relevant features from raw EEG signals.

Convolutional Neural Networks (CNNs)
CNNs have proven e�ective in EEG-based lie detection by 
capturing spatial and spectral features from multi-channel EEG 
recordings. �ese networks apply convolutional �lters to extract 
frequency-domain information relevant to deception-related 
brain activity. Several studies have shown that CNN-based 
models can outperform traditional classi�ers such as support 
vector machines (SVMs) and k-nearest neighbors (KNNs) in lie 
detection tasks [8]. Recent advancements involve the use of 
multi-scale CNNs, which can learn hierarchical feature 
representations, improving classi�cation accuracy across 
diverse datasets.

Recurrent Neural Networks (RNNs) and Long 
Short-Term Memory (LSTM) Networks
Given the temporal nature of EEG signals, RNNs and LSTMs 
have been employed to model time-dependent patterns 
associated with deception. �ese architectures can capture 
long-range dependencies in EEG sequences, improving 
classi�cation accuracy. Hybrid models combining CNNs and 
LSTMs have further enhanced performance by integrating 
spatial and temporal feature extraction [9]. Additionally, 

attention-based RNNs have been explored to dynamically focus 
on the most relevant neural activity patterns, further re�ning lie 
detection accuracy.

fMRI-Based Deep Learning Models for Lie Detection 

fMRI provides high spatial resolution imaging of brain activity, 
making it a valuable tool for identifying deception-related 
neural activation patterns [10]. Deep learning techniques have 
been applied to analyze fMRI data, extracting relevant features 
for deception classi�cation.

Deep Belief Networks (DBNs) and Autoencoders
DBNs and autoencoders have been used to learn hierarchical 
representations from fMRI data, reducing dimensionality while 
preserving critical information [11]. �ese models enhance the 
detection of deception-related activation patterns, improving 
classi�cation robustness. Additionally, generative adversarial 
networks (GANs) have been applied to synthesize realistic fMRI 
data to augment training datasets and address the issue of 
limited real-world samples.

Transformer Models for BCI-based Lie Detection
Recent advancements in transformer-based architectures, such 
as Vision Transformers (ViTs) and BERT-like models adapted 
for time-series data, have shown promise in fMRI and 
EEG-based deception detection [12]. Transformers leverage 
self-attention mechanisms to model long-range dependencies, 
making them well-suited for analyzing complex neural data. 
�e application of pre-trained transformer models on 
large-scale neuroimaging datasets has demonstrated improved 
generalization and robustness, potentially paving the way for 
real-world deployment.

Challenges and Future Directions
Despite the success of deep learning approaches in BCI-based 
deception detection, several challenges persist. Data scarcity 
remains a signi�cant issue, as high-quality deception datasets 
are limited. Transfer learning and data augmentation 
techniques o�er potential solutions to enhance model 
generalization. Additionally, ethical concerns regarding privacy, 
consent, and potential misuse of AI-driven lie detection must be 
addressed through transparent guidelines and regulatory 
frameworks.

 �e interpretability of deep learning models is another 
challenge, as these models are o�en considered "black boxes." 
Explainable AI (XAI) techniques are needed to enhance the 
transparency and trustworthiness of deception detection 
systems. Methods such as Grad-CAM for visualizing model 
attention and SHAP values for feature importance analysis are 
being explored to improve interpretability. Future research 
should focus on re�ning deep learning methodologies while 
ensuring ethical and responsible deployment in forensic, 
security, and clinical settings.

Data scarcity and generalization
High-quality deception datasets are limited, posing challenges for 
training robust deep learning models [13]. Transfer learning and 
data augmentation techniques are potential solutions to enhance 
model generalization. �e creation of standardized, large-scale 
datasets will be crucial for advancing this research �eld.

Ethical and legal considerations
�e application of AI-driven lie detection raises ethical 
concerns regarding privacy, consent, and potential misuse. 
Transparent guidelines and regulatory frameworks are 
necessary to ensure ethical deployment. In addition, public 
acceptance of AI-based lie detection remains a signi�cant 
challenge, requiring extensive validation and policy discussions 
[14].

Interpretability and explainability
Deep learning models are o�en considered black boxes, making 
it di�cult to interpret their decision-making processes. 
Explainable AI (XAI) techniques are needed to enhance the 
transparency and trustworthiness of deception detection 
systems. Methods such as Grad-CAM for visualizing model 
attention and SHAP values for feature importance analysis are 
being explored to improve interpretability [15].

Conclusions
�e integration of deep learning with BCI technology has 
signi�cantly advanced the �eld of lie detection. EEG and 
fMRI-based deep learning models demonstrate superior 
accuracy in identifying deception-related neural patterns 
compared to traditional methods. CNNs, RNNs, and 
transformer-based architectures have emerged as powerful 
tools for decoding complex brain signals, o�ering a data-driven 
approach to lie detection. However, challenges related to data 
availability, ethical implications, and model interpretability 
must be addressed to enable practical applications. Future 
research should focus on developing more robust, interpretable, 
and ethically responsible AI-driven deception detection 
systems, ensuring their viability for forensic, security, and 
clinical settings.
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Lie detection has long been a topic of scienti�c inquiry, with 
applications spanning forensic investigations, security 
screenings, and clinical assessments [1]. Traditional methods, 
including polygraph tests, rely on physiological markers such as 
heart rate, blood pressure, and skin conductance [2]. However, 
these markers can be in�uenced by anxiety, stress, or 
countermeasures, rendering the polygraph unreliable. To 
overcome these limitations, researchers have explored brain 
activity as a more direct indicator of deception.

 Brain-Computer Interfaces (BCIs) provide a novel 
approach to lie detection by decoding neurophysiological 
signals associated with cognitive and emotional states. EEG and 
fMRI have emerged as the primary modalities for capturing 
neural responses linked to deception [3]. However, 
conventional machine learning techniques o�en struggle to 
handle the high-dimensional, nonlinear nature of brain signals. 
�e rise of deep learning has revolutionized this �eld, o�ering 
powerful tools to extract meaningful features and improve 
classi�cation accuracy.

 Recent advancements in computational neuroscience, 
particularly through deep learning models, have enabled the 
detection of deception-related neural patterns with 
unprecedented precision. Deep learning methods facilitate 
automated feature extraction, allowing researchers to bypass the 
limitations of traditional handcra�ed feature engineering [4]. 
�is review examines recent advancements in deep learning 
applications for BCI-based lie detection. It discusses the 
underlying neural mechanisms of deception, the role of EEG and 
fMRI in recording deception-related brain activity, and how deep 
learning models enhance the interpretation of these signals. 
Additionally, the review explores hybrid models, generative 
approaches, and multimodal fusion techniques that enhance the 
robustness and generalizability of deception detection systems. 
Challenges and future directions are also considered, highlighting 
the interdisciplinary nature of this emerging research area.

Neural Mechanisms of Deception
Deception is a complex cognitive process that involves multiple 

brain regions, including the prefrontal cortex (PFC), anterior 
cingulate cortex (ACC), and parietal regions. Studies using 
fMRI have demonstrated increased activity in the PFC during 
deceptive responses, re�ecting the cognitive load required to 
suppress the truth and construct a falsehood. �e ACC is 
implicated in con�ict monitoring, detecting inconsistencies 
between internal knowledge and external responses. �e 
parietal cortex, particularly the inferior parietal lobule, has been 
associated with attentional control and memory retrieval, which 
are essential during deception [5].

 EEG studies have identi�ed deception-related event- 
related potentials (ERPs), such as the P300 and N400 
components, which signify recognition and semantic 
processing discrepancies. �e P300 wave is particularly relevant 
in concealed information tests, where a suspect's recognition of 
critical details elicits a neural response even if they attempt to 
suppress it. Additionally, frequency-domain features such as 
increased beta and gamma band activity during deception 
further con�rm the neurophysiological underpinnings of lying.
Deep learning models can exploit these deception-related 
neural signatures to di�erentiate between truthful and 
deceptive responses with high accuracy. By learning 
hierarchical representations of neural activity, deep networks 
enable more precise classi�cation of deceptive states compared 
to conventional machine learning methods [6]. Advanced deep 
learning architectures leverage these brain signal patterns to 
enhance accuracy and robustness in real-world scenarios.

EEG-Based Deep Learning Models for Lie Detection
EEG is the most widely used modality for BCI-based lie 
detection due to its high temporal resolution, non-invasiveness, 
and cost-e�ectiveness. EEG signals, however, are inherently 
noisy and exhibit signi�cant inter-subject variability, making 
their interpretation challenging [7]. Deep learning models have 
been employed to address these challenges by automatically 
extracting relevant features from raw EEG signals.

Convolutional Neural Networks (CNNs)
CNNs have proven e�ective in EEG-based lie detection by 
capturing spatial and spectral features from multi-channel EEG 
recordings. �ese networks apply convolutional �lters to extract 
frequency-domain information relevant to deception-related 
brain activity. Several studies have shown that CNN-based 
models can outperform traditional classi�ers such as support 
vector machines (SVMs) and k-nearest neighbors (KNNs) in lie 
detection tasks [8]. Recent advancements involve the use of 
multi-scale CNNs, which can learn hierarchical feature 
representations, improving classi�cation accuracy across 
diverse datasets.

Recurrent Neural Networks (RNNs) and Long 
Short-Term Memory (LSTM) Networks
Given the temporal nature of EEG signals, RNNs and LSTMs 
have been employed to model time-dependent patterns 
associated with deception. �ese architectures can capture 
long-range dependencies in EEG sequences, improving 
classi�cation accuracy. Hybrid models combining CNNs and 
LSTMs have further enhanced performance by integrating 
spatial and temporal feature extraction [9]. Additionally, 

attention-based RNNs have been explored to dynamically focus 
on the most relevant neural activity patterns, further re�ning lie 
detection accuracy.

fMRI-Based Deep Learning Models for Lie Detection 

fMRI provides high spatial resolution imaging of brain activity, 
making it a valuable tool for identifying deception-related 
neural activation patterns [10]. Deep learning techniques have 
been applied to analyze fMRI data, extracting relevant features 
for deception classi�cation.

Deep Belief Networks (DBNs) and Autoencoders
DBNs and autoencoders have been used to learn hierarchical 
representations from fMRI data, reducing dimensionality while 
preserving critical information [11]. �ese models enhance the 
detection of deception-related activation patterns, improving 
classi�cation robustness. Additionally, generative adversarial 
networks (GANs) have been applied to synthesize realistic fMRI 
data to augment training datasets and address the issue of 
limited real-world samples.

Transformer Models for BCI-based Lie Detection
Recent advancements in transformer-based architectures, such 
as Vision Transformers (ViTs) and BERT-like models adapted 
for time-series data, have shown promise in fMRI and 
EEG-based deception detection [12]. Transformers leverage 
self-attention mechanisms to model long-range dependencies, 
making them well-suited for analyzing complex neural data. 
�e application of pre-trained transformer models on 
large-scale neuroimaging datasets has demonstrated improved 
generalization and robustness, potentially paving the way for 
real-world deployment.

Challenges and Future Directions
Despite the success of deep learning approaches in BCI-based 
deception detection, several challenges persist. Data scarcity 
remains a signi�cant issue, as high-quality deception datasets 
are limited. Transfer learning and data augmentation 
techniques o�er potential solutions to enhance model 
generalization. Additionally, ethical concerns regarding privacy, 
consent, and potential misuse of AI-driven lie detection must be 
addressed through transparent guidelines and regulatory 
frameworks.

 �e interpretability of deep learning models is another 
challenge, as these models are o�en considered "black boxes." 
Explainable AI (XAI) techniques are needed to enhance the 
transparency and trustworthiness of deception detection 
systems. Methods such as Grad-CAM for visualizing model 
attention and SHAP values for feature importance analysis are 
being explored to improve interpretability. Future research 
should focus on re�ning deep learning methodologies while 
ensuring ethical and responsible deployment in forensic, 
security, and clinical settings.

Data scarcity and generalization
High-quality deception datasets are limited, posing challenges for 
training robust deep learning models [13]. Transfer learning and 
data augmentation techniques are potential solutions to enhance 
model generalization. �e creation of standardized, large-scale 
datasets will be crucial for advancing this research �eld.

Ethical and legal considerations
�e application of AI-driven lie detection raises ethical 
concerns regarding privacy, consent, and potential misuse. 
Transparent guidelines and regulatory frameworks are 
necessary to ensure ethical deployment. In addition, public 
acceptance of AI-based lie detection remains a signi�cant 
challenge, requiring extensive validation and policy discussions 
[14].

Interpretability and explainability
Deep learning models are o�en considered black boxes, making 
it di�cult to interpret their decision-making processes. 
Explainable AI (XAI) techniques are needed to enhance the 
transparency and trustworthiness of deception detection 
systems. Methods such as Grad-CAM for visualizing model 
attention and SHAP values for feature importance analysis are 
being explored to improve interpretability [15].

Conclusions
�e integration of deep learning with BCI technology has 
signi�cantly advanced the �eld of lie detection. EEG and 
fMRI-based deep learning models demonstrate superior 
accuracy in identifying deception-related neural patterns 
compared to traditional methods. CNNs, RNNs, and 
transformer-based architectures have emerged as powerful 
tools for decoding complex brain signals, o�ering a data-driven 
approach to lie detection. However, challenges related to data 
availability, ethical implications, and model interpretability 
must be addressed to enable practical applications. Future 
research should focus on developing more robust, interpretable, 
and ethically responsible AI-driven deception detection 
systems, ensuring their viability for forensic, security, and 
clinical settings.
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Lie detection has long been a topic of scienti�c inquiry, with 
applications spanning forensic investigations, security 
screenings, and clinical assessments [1]. Traditional methods, 
including polygraph tests, rely on physiological markers such as 
heart rate, blood pressure, and skin conductance [2]. However, 
these markers can be in�uenced by anxiety, stress, or 
countermeasures, rendering the polygraph unreliable. To 
overcome these limitations, researchers have explored brain 
activity as a more direct indicator of deception.

 Brain-Computer Interfaces (BCIs) provide a novel 
approach to lie detection by decoding neurophysiological 
signals associated with cognitive and emotional states. EEG and 
fMRI have emerged as the primary modalities for capturing 
neural responses linked to deception [3]. However, 
conventional machine learning techniques o�en struggle to 
handle the high-dimensional, nonlinear nature of brain signals. 
�e rise of deep learning has revolutionized this �eld, o�ering 
powerful tools to extract meaningful features and improve 
classi�cation accuracy.

 Recent advancements in computational neuroscience, 
particularly through deep learning models, have enabled the 
detection of deception-related neural patterns with 
unprecedented precision. Deep learning methods facilitate 
automated feature extraction, allowing researchers to bypass the 
limitations of traditional handcra�ed feature engineering [4]. 
�is review examines recent advancements in deep learning 
applications for BCI-based lie detection. It discusses the 
underlying neural mechanisms of deception, the role of EEG and 
fMRI in recording deception-related brain activity, and how deep 
learning models enhance the interpretation of these signals. 
Additionally, the review explores hybrid models, generative 
approaches, and multimodal fusion techniques that enhance the 
robustness and generalizability of deception detection systems. 
Challenges and future directions are also considered, highlighting 
the interdisciplinary nature of this emerging research area.

Neural Mechanisms of Deception
Deception is a complex cognitive process that involves multiple 

brain regions, including the prefrontal cortex (PFC), anterior 
cingulate cortex (ACC), and parietal regions. Studies using 
fMRI have demonstrated increased activity in the PFC during 
deceptive responses, re�ecting the cognitive load required to 
suppress the truth and construct a falsehood. �e ACC is 
implicated in con�ict monitoring, detecting inconsistencies 
between internal knowledge and external responses. �e 
parietal cortex, particularly the inferior parietal lobule, has been 
associated with attentional control and memory retrieval, which 
are essential during deception [5].

 EEG studies have identi�ed deception-related event- 
related potentials (ERPs), such as the P300 and N400 
components, which signify recognition and semantic 
processing discrepancies. �e P300 wave is particularly relevant 
in concealed information tests, where a suspect's recognition of 
critical details elicits a neural response even if they attempt to 
suppress it. Additionally, frequency-domain features such as 
increased beta and gamma band activity during deception 
further con�rm the neurophysiological underpinnings of lying.
Deep learning models can exploit these deception-related 
neural signatures to di�erentiate between truthful and 
deceptive responses with high accuracy. By learning 
hierarchical representations of neural activity, deep networks 
enable more precise classi�cation of deceptive states compared 
to conventional machine learning methods [6]. Advanced deep 
learning architectures leverage these brain signal patterns to 
enhance accuracy and robustness in real-world scenarios.

EEG-Based Deep Learning Models for Lie Detection
EEG is the most widely used modality for BCI-based lie 
detection due to its high temporal resolution, non-invasiveness, 
and cost-e�ectiveness. EEG signals, however, are inherently 
noisy and exhibit signi�cant inter-subject variability, making 
their interpretation challenging [7]. Deep learning models have 
been employed to address these challenges by automatically 
extracting relevant features from raw EEG signals.

Convolutional Neural Networks (CNNs)
CNNs have proven e�ective in EEG-based lie detection by 
capturing spatial and spectral features from multi-channel EEG 
recordings. �ese networks apply convolutional �lters to extract 
frequency-domain information relevant to deception-related 
brain activity. Several studies have shown that CNN-based 
models can outperform traditional classi�ers such as support 
vector machines (SVMs) and k-nearest neighbors (KNNs) in lie 
detection tasks [8]. Recent advancements involve the use of 
multi-scale CNNs, which can learn hierarchical feature 
representations, improving classi�cation accuracy across 
diverse datasets.

Recurrent Neural Networks (RNNs) and Long 
Short-Term Memory (LSTM) Networks
Given the temporal nature of EEG signals, RNNs and LSTMs 
have been employed to model time-dependent patterns 
associated with deception. �ese architectures can capture 
long-range dependencies in EEG sequences, improving 
classi�cation accuracy. Hybrid models combining CNNs and 
LSTMs have further enhanced performance by integrating 
spatial and temporal feature extraction [9]. Additionally, 

attention-based RNNs have been explored to dynamically focus 
on the most relevant neural activity patterns, further re�ning lie 
detection accuracy.

fMRI-Based Deep Learning Models for Lie Detection 

fMRI provides high spatial resolution imaging of brain activity, 
making it a valuable tool for identifying deception-related 
neural activation patterns [10]. Deep learning techniques have 
been applied to analyze fMRI data, extracting relevant features 
for deception classi�cation.

Deep Belief Networks (DBNs) and Autoencoders
DBNs and autoencoders have been used to learn hierarchical 
representations from fMRI data, reducing dimensionality while 
preserving critical information [11]. �ese models enhance the 
detection of deception-related activation patterns, improving 
classi�cation robustness. Additionally, generative adversarial 
networks (GANs) have been applied to synthesize realistic fMRI 
data to augment training datasets and address the issue of 
limited real-world samples.

Transformer Models for BCI-based Lie Detection
Recent advancements in transformer-based architectures, such 
as Vision Transformers (ViTs) and BERT-like models adapted 
for time-series data, have shown promise in fMRI and 
EEG-based deception detection [12]. Transformers leverage 
self-attention mechanisms to model long-range dependencies, 
making them well-suited for analyzing complex neural data. 
�e application of pre-trained transformer models on 
large-scale neuroimaging datasets has demonstrated improved 
generalization and robustness, potentially paving the way for 
real-world deployment.

Challenges and Future Directions
Despite the success of deep learning approaches in BCI-based 
deception detection, several challenges persist. Data scarcity 
remains a signi�cant issue, as high-quality deception datasets 
are limited. Transfer learning and data augmentation 
techniques o�er potential solutions to enhance model 
generalization. Additionally, ethical concerns regarding privacy, 
consent, and potential misuse of AI-driven lie detection must be 
addressed through transparent guidelines and regulatory 
frameworks.

 �e interpretability of deep learning models is another 
challenge, as these models are o�en considered "black boxes." 
Explainable AI (XAI) techniques are needed to enhance the 
transparency and trustworthiness of deception detection 
systems. Methods such as Grad-CAM for visualizing model 
attention and SHAP values for feature importance analysis are 
being explored to improve interpretability. Future research 
should focus on re�ning deep learning methodologies while 
ensuring ethical and responsible deployment in forensic, 
security, and clinical settings.

Data scarcity and generalization
High-quality deception datasets are limited, posing challenges for 
training robust deep learning models [13]. Transfer learning and 
data augmentation techniques are potential solutions to enhance 
model generalization. �e creation of standardized, large-scale 
datasets will be crucial for advancing this research �eld.

Ethical and legal considerations
�e application of AI-driven lie detection raises ethical 
concerns regarding privacy, consent, and potential misuse. 
Transparent guidelines and regulatory frameworks are 
necessary to ensure ethical deployment. In addition, public 
acceptance of AI-based lie detection remains a signi�cant 
challenge, requiring extensive validation and policy discussions 
[14].

Interpretability and explainability
Deep learning models are o�en considered black boxes, making 
it di�cult to interpret their decision-making processes. 
Explainable AI (XAI) techniques are needed to enhance the 
transparency and trustworthiness of deception detection 
systems. Methods such as Grad-CAM for visualizing model 
attention and SHAP values for feature importance analysis are 
being explored to improve interpretability [15].

Conclusions
�e integration of deep learning with BCI technology has 
signi�cantly advanced the �eld of lie detection. EEG and 
fMRI-based deep learning models demonstrate superior 
accuracy in identifying deception-related neural patterns 
compared to traditional methods. CNNs, RNNs, and 
transformer-based architectures have emerged as powerful 
tools for decoding complex brain signals, o�ering a data-driven 
approach to lie detection. However, challenges related to data 
availability, ethical implications, and model interpretability 
must be addressed to enable practical applications. Future 
research should focus on developing more robust, interpretable, 
and ethically responsible AI-driven deception detection 
systems, ensuring their viability for forensic, security, and 
clinical settings.
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